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THEORY OF HEAT AND MASS TRANSFER IN DISPERSE MEDIA 

A. I. Moshinskii  UDC 536.242:532.546 

The equations o f  heat and mass transfer in heterogeneous media obtained in [ I ]  are generalized to the c~se 
o f  disperse-phase particles o f  arbitrary form.  

In describing a series of processes in nature and engineering associated with heat or mass propagation ia granular 
layers, the model of two coexisting continua is widely used, in the form (o ) 

sdlc~ ~ + u.V TI = Z,AT1 + ~(T~-- TO, (1) 

(I - -  e) do.c2 ~T~ __ ~ (TI - -  T~), 
0r 

which has been repeatedly derived by different methods [2-5]. It is written here for the case of heat transfer. The quasi- 
steady approximation, in which the coefficients )~, and a may be regarded as constants, has become the most popular 
in practical calculations. However, even in this simplest formulation, the solution of problems is obtained in a form that 
is cumbersome and difficult to interpret [3, 6, 7]. In addition, the coefficients A,, cr are by no means always constant [1, 
5]. Therefore, there is a pressing need both for the investigation of different approximate methods of solvir g Eq. (1) 
[8, 9] and for theoretical understanding of the given system and the possibility of replacing it by simpler equations [t, 
10]. 

As is known [1 ], two relaxational processes occur in a heterogeneous disperse system: inside the particles and in 
the intergranular channels. Depending on the relations between the corresponding relaxation times and the characteristic 
time of the problem specified from additional conditions, particular limiting models may be constructed. In [ l ], under 
the condition r 1 << r 2, approximate equations of the problem are formulated in the region of large and small imes for 
a monodisperse system with spherical particles, and possible applications of the given scheme to practical problems 
including only one (in the terminology of [8], "equivalent") equation are discussed. Comparison with the experimental 
data in [11] shows a definite improvement in the agreement between theory and experiment in comparison w{th other 
models [ 1 ]. 

The basic advantage of describing the heterogeneous system under the condition that r 1 << r 2 reduces to the 
possibility of constructing closing relations for exchange heat (mass) fluxes by a relatively simple method: requi::ing that 
the surface temperature of the particle be equal to the corresponding temperature value in the carrier phase, (in the 
macroscale L), while in the microscale s (e << L), this temperature may be assumed to depend only on the time. This 
markedly simplifies the calculations in comparison with the various traditional [5, 12] versions of cell models with an 
isolated particle. 

1. General formulas for the heat-transfer characteristics of the particle--disperse-medium system are now 
obtained with the above-noted relaxational relations, with a negligibly small role of contact resistance to heat transfer. 
The problem in the region inside the particle is formulated as follows 

AT :: OT/Ot, t = t~'c/d~_cJ 2, (2) 

Tlt=o ~-: To(x, y, z), (3) 

Tls : TI (t), 

where t = V1/S; V is the particle volume; s is its surface. Laplace transformation with respect to the time is now applied 
to Eq. (2) and the boundary condition in Eq. (3) 

AT* = pT* - -  To, T'Is : T~ (p), (4) 
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where p is the variable of  Laplace transformation, and an asterisk denotes transformed quantities. The Green's function 
Gl(z, O is determined for the Dirichlet problem in the region inside the particle, and expressed in terms of the 
orthonormalized family of functions vi(z), which satisfy the equation 

Av~ + ~v~ = 0, ~ = const > 0, i = 1, 2 . . . . .  (5) 

with a zero value of v i at the contour of the region. Here and below, the vector symbols such as z denote, for the sake 
of brevity, a set of three variables: x, y, z for  z; (,  r/, f for f,  and so on. As is known [13], G1 is expressed in terms of 
the family v i by the formula 

vi (z) v!. (~) (6) 
Gj (z, ~) 

= (~i) 1 

where j -- 1. 
Series expansion of  the solution of Eq. (4) in terms of v i and introducing the notation dz = dxdydz gives the 

following result, using the orthonormalization and completeness of  the system v i 

T* -= ~iv, (z_______~) + TI* ~iTivi (z) (7) 
,~t 

where i=1 ~i + P  i=l ~ + P 

w = S ~ (z) dz, ~ = ( To (z) ~,~ (z) dz. (8) 

Below, the symbol V for integration over the whole volume of the particle is omitted, and the notation ~ is used for 
the surface integral over the whole surface. 

Introducing the mean temperature T~. = (T} = fT(z)dz (remember that the particle volume is normalized to unity 
here) gives , 

T2 = T~OO* + B*, 

q)* = ' ~  ~iT-----i---i, B* = ~'f': (9) 

�9 = ~ + P  i=~ F ~ + P  

The heat flux to the particle is determined by the expression 

27"* d~ T* O * = ~  On =Sar*dz---p 2 - - < T o > =  (10) 

~d~Ti , ---pT~@*--K*, K* = ( T o )  --pB* = 
�9 = / ~ i + P  

which is based on the Gauss--Ostrogradskii theorem and the formula 

<To> = 2 ~ i 7 i .  
i=1 

Inverse transformation in Eqs. (9) and (10) gives 
t 

T~ = ,t" * (t - -  ~) TI (~) d~ + B (t), (11) 
0 

dcP t 0 T 1  
q = ~ T~ (t - -  ~) ~ d~ + T~ - / r  (t) = .f * ( t -  ~) o ~  d~ + 

0 0 
+ ~ (t) Td,=. - -  K (t). (12) 

Substituting the result for  Q into the balance equation for the material in the continuous phase, one equation for T 1 is 
obtained 

e d i c t ( 1 0 . . t . . u . v ) T I = ~ , A T  1 (1--e)~,~ [ �9 - - T  o--T z~ T~ - -  X((t) + 

.r O. d~ ] , t ~ ar 
0 

(13) 

Equation (13) has the structure of an equation with "memory" expressed by the integral term. The influence of 
the initial function T o is taken into account by the term K(t). This equation is regarded as macroscopic. Simpler relations 
corresponding to large and small time values in describing the process by Eq. (13) are now obtained. 
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2. Consider Larger Times. In obtaining approximate equations, it is expedient to work with Laplace-transformed 
quantities and to construct expansions in terms of  the parameter p. Introducing the functions wj and the constants nj 

~J (~) -- S ~J (z, ~) d~, ~j = ~ :0: (z) d~, / = I, 2 .... (14) 

the expansion of  ~* takes the form 
e ~  

q)* = 1 q- ~,~ (--  1)in.~P i. (15) 
]=i 

Then, inverse transformation is undertaken in Eq. (13), and a finite number of terms is retained in the series in Eq. (15); 
this corresponds to the method [8] of obtaining equivalent equations. There is no need here for  expansion of  K* in Eq. 
(10) similar to Eq. (15), since the equivalent equation is constructed for times of  the order of  t >> #1-1 and the set of 
exponents obtained in the transformation of  K* shows that, at such times, K(t) is practically zero. Thus 

OT1 [ed:l + (1 -- e) d.,.c d ~ + ed:tu "vT1 = )~,AT1 -- 
(16) 

:: : "-i O/Tt 
-- (1 -- e) d2c2 ~ (-- I) n:_~2 O* f 

]=2 

As is evident f rom Eq. (16), nj must be determined to formulate the problem of heat and mass transfer in a 
heterogeneous medium consisting of particles of  identical size and shape. The functions wj are determined recurrently 
from the equation 

Awj - - - -w j_ ~ ,  ] =  1, 2 . . . .  ; w o =  1, (17) 

as readily follows from Eqs. (5) and (6). At the boundary of the region, wj vanishes. The relation 

G~ (z, ;) = S ai (z, r) 6:_~ (r, ~) dr, (18) 

which resembles, in external form, the equation of  the theory of  Markov processes [14], may prove useful he re. Hence 
it follows that 

wy (z) ~ 3" Gi (z, r) wy_~ (r) dr, (19) 

= ~ wi (r) w:_ i (r) dr. ny (20) 
o 

The functions wj are superharmonic (Awj _< 0), and therefore exceed the solution of  the Laplace equation with 
the same boundary conditions everywhere inside the region. In particular w 1 _> 0 and, since the case w 1 --- 0 is impossible, 
max w 1 = w, > 0. It then follows from Eq. (19) by induction that max wj _< w,J (the function G 1 ~ 0); iaence an 
inequality is obtained for  nj: nj _< w,J. This guarantees the convergence of the series in Eq. (15) when [ p ] < w, q .  
Nevertheless, the accurate value for the radius of convergence #1 follows from the representation of  ~* in the form of 
a sum of  simple fractions in Eq. (9). 

It follows from Eq. (20) that, knowing k functions wj, 2k coefficients nj may be calculated. An exhaustive 
(fundamentally) solution of  the problem may be obtained, knowing the Green's function Gl(z, f); however, finding this 
function for regions of  complex form is associated with certain difficulties. It is simpler to investigate the solution of 
Eq. (17), the more so in that, in practice, one or two functions wj may be required to find nj, i.e., to construct the 
equivalent equation. Taking into account that nj is an integral characteristic of the solution, well-developed approximate 
approaches which give completely acceptable accuracy for integral relations of the solution "may be used [151!. 

The problem for finding wj coincides with the problem of  determining the time to reach the absorbing boundary 
for a particle moving in the region by the law of Markov processes, with a zero drif t  coefficient and constant diffusion 
coefficient [14]. Then n 1 is the mean time to reach the boundary of the region for a particle somewhere inside it (at point 
z). Apart from some factor, the recurrence formulas in Eq. (17) coincide with the dependences for the "mon~ents" of 
corresponding order for  the mean time in which a particle reaches the boundary of the region from the given internal 
point. Here nj corresponds to the mean square, cube, and so on of the time of particle absorption at the boundary. This 
interpretation of the coefficients in the equivalent Eq. (16) is especially useful and clear in problems of  mass transfer 
in porous systems in the presence of  stagnant zones, where the impurity particle again moves in accordance with the 
above comments and with some correction of the boundary conditions. A probabilistic approach [16] is used here to 
describe the propagation of the particle in a porous medium, and the presence of stagnant zones leads to corre:t ion of 
the model [16] either by the traditional method --  the system in Eq. (1) - -  or by postulating an equation with memory 
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of the form in Eq. (13), where the integral term is interpreted in relation to the residence time in the stagnant zone, and 
so on. In fact, Eq. (1) may also be reduced to a single equation by expressing T~ in terms of T a f rom the second equation 
in the form of  an integral relation and substituting the result into the first relation of  Eq. (1). Thus, conversion to an 
equivalent equation containing terms up to a ~ T J 0 r  z (inclusive) corresponds to a rough description of the mass-transfer 
interaction of the flow section with the stagnant zones, when the distribution function of the particle exit time from the 
stagnant zone is replaced by its mean value. Note that the integrodifferential equations for mass transfer in a randomly 
inhomogeneous porous medium were introduced in [ 17], for example. Note also that relaxation of  the mass (temperature) 
transfer in the basic flow over time occurs in heterogeneous systems; this is associated, to a known extent, with 
variability of the coefficient  ~, [5]. This may lead to a term 02Tf fOr  2 in the basic equation of opposite sign to the term 
with 02T1/Or 2 due to the presence of the stagnant zones [11]; this may influence the type of equivalent equation. In a 
porous randomly inhomogeneous medium, it has been noted [18] that the type of transfer equation itself, with the 
corresponding detailed description (second-order equation), is a relative concept. 

3. Consider some examples. The simplest is a spherical particle. The formula for ~* was in fact obtained in [19] 

(I3" = 3 (Vp  cth "1/~--1)/p.  

Expansion of  the hyperbolic cotangent in simple fractions [20] gives the representation in Eq. (9) for  O*, and the series 
in powers of  p [21] 

= 6 ~ (p -t- a'n2) -1 = 1 -1- 12 2 22"B2n+2Pn/(2n "Jr- 2)! (21) 
n = l  n ~ l  

allows nj to be determined: nj --- (--l)Jl2.2SJB~d+ff(2 j + 2)!, where Bg.n is a Bernoulli number. 
As the second example, consider a particle of ellipsoidal form xe/a 2 + yZ/b~ + z~'/c 9 = 1, where a, b, c are 

dimensionless parameters normalized, like x, y, z, to the particle volume 0rabc --- 1). The solution of the equation for w 1 
takes the form 

w I = A (I - -  xe/a 2 - -  ge/be - -  ze/ce), A = 0.5/(1/a e -t- 1/b e -Jr 1/c2). (22) 

From Eq. (20), n 1 and n~. are found 

nl = fw~ (z) dz ~ 8A/15, ne = ~v~ (z) dz = a2A2/105. 

The function w~. is sought in the form 
we = (o~x z + I~y 2 + ~z~ + 8) w~, 

which is substituted into Eq. (17) with j = 2 to give 8 = A 

[ 1{ I (23> A (ha - -  aZ) q- (b2 - -  ca) 1 2 q- (8 q- b~)[64 -k 5aZc ~ q- 24 (a z q- bZ)] - l .  
13 = ~ 8 -}- a e 8 -t- c a - b e (8 -}- ae)(8 -q- cz) 

The coefficients oe and X are determined from Eq. (23) with the substitution b ,--, a and b ~ c, in view of the symmetry 
of the problem. The functions wj with j ~ 3 may be found analogously. 

As another example, consider particles in the form of a circular cylinder. Solution of  Eq. (17) with j = 1 by the 
Fourier method and calculation of n 1 f rom Eq. (20) with j = 1, i -- 1 gives the expression 

n I 1 8 o~ th('~ v/2) v z 

a z 8 v 6 
n = l  "~n (24) 

16v ~ ~ l o [ • ( 2 n +  1)/v] 

~5 ,~='~o Io in (2n + 1)/vl(2n + 1p ' 

where u = h/a;  Io(z) is a modified Bessel function; "/n are the roots of the equation Jo(~/) = 0; h, a are the cylinder height 
and base radius normalized to its volume 0ra~'h --- 1). From the second series in Eq. (24), taking account of the asymptotic 
properties of  the Bessel functions [21], it follows that n l / a  ~ ,: u~/6 when u ~ 0. Analogously, it follows from the first 
series that 

nlfCt 9" "~" 1 1 8 - - 0 . 1 0 1 2 4 / v ,  v.-+ oo. (25) 
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The function 8nl/a2 is plotted in Fig. 1. Equation (25) may also be used outside the range in Fig. 1. 
Note that, on filling with cylindrical grains, they may be in contact over relatively large surfaces, and then the 

"contact resistance" must be taken into account. 
4. Now consider the case of  small times: r 1 < r < rz. In this case, it is again expedient to use the expansion of 

Laplace-transformed relations, but only in the region of  large p. The expressions obtained earlier for  Q*, @*, and other 
functions are inexpedient. It is simpler to proceed directly f rom the analysis of  Eq. (4). At small times, the process will 
only occur intensively in the wall region of the particle. Far f rom the boundary, the initial temperature distribution is 
retained. To simplify the calculations, T O -- 0 is assumed. 

First, the boundary of  the region is assumed to be a smooth surface with a minimum radius of  curva~ure of  the 
order of the particle size. In local consideration of the problem, it is expedient to introduce the "intern~r' [22, 23] 
coordinates f = z-.crp (p ---, oo). In the vicinity of the coordinate origin f -- 0, the equation of  the boundary of the region 
is written in the form f = (p~Z + R~2)/d~-, where P = 0.5a2z/Ox~; R -- 0.502z/ay 2 when x = 0, y -- 0, z = 0. Tt:e solution 
of Eq. (4) is sought in the form 

T* = T* (p)[e o (~) 4- p- ' /SE~ (~) q_ ...]. (26) 

The following problems are obtained for E o and E 1 
(27) 

AE o = E  o, Epic= 0 =  1, Eol;_ ~ - + 0 ,  

AE~ : E,, EJ;=0 = - -  (p~z + R~qz) OEo/O~l;=o, E~[;~ ~ ~ 0 (28) 

in realizing the perturbation method [22, 23] with respect to 1/v"-P. The problem in Eq. (27) has the solutio~ E o = exp 
(--~). This allows Eq. (28) to be divided into two, by representing E x as the sum of  solutions depending on ~, ~ and f ,  
'/, respectively. Factors of  convergence exp ( - -60,  exp (--6,/) may be introduced in the boundary condition with f = 0, 
passing subsequently to the limit as 6 ~ 0, for convenience in realizing integral Fourier transformations in solving the 
problems obtained. After  these manipulations, the following expression is obtained for the heat flux, wh:ch is the 
quantity of interest here 

OE,/O~l;=o = P (1 - -  ~g) 4- R (1 - -  ~lz), 

and hence the local heat-f lux density may be calculated for two approximations with respect to l/vZ-ff 

q, = -1/- / O E o  ._[ 1 OE1 ~=o) - - P / - - ~  ~=o Vp c9; T~=T'~'(]/'P--• (29) 

where x = P + R is the surface curvature as a function of a point on it. integrating Eq. (29) over the whole particle 
surface and substituting the result into the heat-balance equation in the first phase, the desired equation is obtaiaed after 
Laplace transformation 

( 8 "V) = V t [ /  ~s x (30) edlQ "-~-T4- u T1 )~,AT1 (l - -  e) Ss / ] / / -  dsc~ 

• + ,r-1/STll,= o -----f-~• , 

where S is the surface area of the particle. In [1], in the equation analogous to Eq. (30), the lower limit of the integral 
is --oo, which corresponds to a sufficiently large value of the time after  the onset of the process. The second term in the 
square brackets may be neglected here. The last term on the r ight-hand side of  Eq. (30) refines the equation of Ill, since 
it takes account of the next approximation. 

The derivation of Eq. (30) assumes a smooth surface surrounding the particle. Heat and mass transfer in packing 
consisting of  particles with sharp changes in the boundary surface --  for  example, particles in the form of cylindrical 
tablets - -  is also of  interest. Various features at the boundary are possible. 

Consider the sufficiently typical case when, in the vicinity of  the given point, the particle surface may be 
approximated, with adequate accuracy, by a wedge with aperture angle 2~b in the "internal coordinates" int;oduced 
above. Confining analysis to the first approximation, the subscript 1 on E 1 is omitted for the sake of  brevity, and the 
corresponding problem is considered in a cylindrical coordinate system (p, ~o) 

8 aE ~SE = !, (31) 
9 ~ P ~ 0 p  4- O(f'z - -  p2E' El~=o; 2, Elp~p~o ~ bounded 
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Fig. 1. Dependence of the parameter 8nl /a  2 on the form of the cylinder. 

Fig. 2. Additional flux at two faces of the wedge as a function of the 
semivertex angle. 

form 
The function E satisfying Eq. (31) is found using the Kontorovich--Lebedev integral transformation [24], in the 

E (p, qg) = 2 ~ ch (axf2) ch [x (~ - -  q$] K,~ (p) dx, (32) 
a ~ ch (~x) 

where Kix(p) is the MacDonald function; i is the imaginary unity. The additional heat flux due to the presence of the 
wedge singularity in comparison with the flux given by Eq. (27) is of basic interest here. Accordingly, the function 
Eo(f) --- exp(--p sin ~o) is written in the form of a Kontorovich--Lebedev transformation [24] 

exp( - -ps in tp)=  2 .t' K~(p)ch x - -~- - - tp  dx, 
0 

and subtracted from Eq. (32), and then a formula analogous to Eq. (10) is used in a sector with aperture angle r At the 
boundary ~o = 0, there is then a difference between the fluxes given by Eqs. (32) and (27), i.e., the difference required, 
and at the boundary ~o = r the flux associated with the function E is zero and the "parasitic" flux due to E o must be 
eliminated in order to obtain the true value for the additional flux at one edge of the wedge. Using the relation 

.[ ~'K~x (g) dv = 
zx  

2 sh (:tx/2) 
0 

and employing the program of actions outlined above, an expression is obtained for the additional flux -~ per unit length 
of the rib 

f~ sh [(z~/2 - -  ~) x] dx (33) 

b ~ sh (axx/2) ch (~x) 

A graph of -q is shown in Fig. 2. At small r the following asymptotic expansion may be obtained 

~ In 2 ,~-~ 42~ (4 ~ -  I) Bo,~B~. ~ - 1 ,  
~ 2n (2n)~ ~ -~  O, 

complementing Fig. 2. To take account of the contribution of the second face of the bihedral corner, "q must be 
multiplied by two. Taking account of the "rib effect" leads to a term of the order of unity with respect to p as p --* e~ 
in the expression for the flux, which adds the expression 2-~LT1/S to the last term on the right hand side of Eq. (30), 
where L is the length of the rib with the given constant aperture angle 2r or if this angle varies slowly along the rib: 
(2T1/S)~g~[r For example, for a circular cylinder, this correction is (-~ -- 2/Ir)STx/[~r(a + h)], where a is the radius; 
h is the cylinder height, and two circumferences of length 2ra are taken into account. The contribution of the term 
containing the mean surface curvature is Tlh/[2a(a + h)] here. 

Singular points in the form of conical points, trihedral angles, and other similar types may be encountered at the 
particle surface. It is readily evident that the additional contribution from these points is of  the next order in p -  
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[O(1/x/P')] as p ~ oo -- and therefore may be neglected within the framework of Eq. (30). For example, the trihedral 
angle formed by three mutually perpendicular planes adds a term (12/~r)Tl*/v~ to the heat flux. 

5. The construction of equivalent equations may also be considered from the viewpoint of the small-perturbation 
method [22, 23]. As noted in [8], the region of applicability of the equivalent equation corresponds to a sma~:l value of 
the parameter r2/r,. This parameter may be taken as the basis in constructing a solution of the general heat- and mass- 
transfer problem by the perturbation method on the basis of equation of the type in Eq. (13). In the first approximation, 
a parabolic single-phase equation will be obtained here, and in the next approximation, instead of an elliptical 
(equivalent) equation, again a parabolic equation, but one which is inhomogeneous, with a source depending on the first 
approximation. The accuracy of this construction corresponds to the accuracy of the elliptical equation. Th~ possible 
appearance of nonuniformity with respect to the coordinates and the time [8] is eliminated by the traditional 
construction of a uniformly applicable expansion [22, 23]. The given approach permits the elimination of the small 
parameter in the higher derivatives in the elliptical equation, simplifies the issue of correct formulation of the problem, 
and permits a more well-founded approach to the formulation of the initial conditions, determining them by means of 
matching with the internal solution at times of the order of r 2. Without going into these questions in more detail, it will 
be noted here that this construction is similar to the problem of [9], to a known extent. Note also that the elliptical 
equivalent equation is analogous in its derivation to the well-known Ozen equation in considering the flow of a viscous 
liquid around a particle at low Reynolds numbers. The above questions (with replacement of the time coordin.'~te by the 
spatial coordinate) also appear there [23]. 

NOTATION 

c, specific heat; d, density; T, temperature; T o, initial temperature in particle; u, velocity of transfer (filtration); 
x, y, z, Cartesian coordinates; e, proportion of continuous phase in unit volume of packing; ~,, effective thermal 
conductivity in continuous medium; )~2, thermal conductivity in disperse phase; #i, eigenvalues of the Dirichlet problem 
in the region inside the particle; ~, 7, internal coordinates; a, heat-transfer coefficient; r, time; r 1, r 2, relaxation times 
in continuous and disperse phases, respectively; r,, characteristic time of problem. Indices: 1, continuous l~hase; 2, 
disperse phase. 
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MASS TRANSFER BETWEEN PHASES AND WATER TRANSPIRATION IN 

A MEDIUM HAVING DOUBLE POROSITY 

Yu. A. Buevich and U. M. Mambetov UDC 532.546 

Two limiting models are proposed for exchange involving porous granules containing water in the 
condensed and vapor states. The water uptake rate by plants can be related to the water content. 

A model exists for  water transport in soil that incorporates plant root transpiration, which leads to a quasilinear 
parabolic equation for  the water content, but it involves major empirical elements and far f rom always correctly reflects 
the actual processes [ 1 ]. This is due in part to the transport mechanisms assumed and in part to the description of the 
plant water uptake. The first aspect has been discussed in [2], where water filling was considered for a two-pore medium 
that simulated a granulated soil. The second amounts to determining the transpiration rate as a function of soil water 
content. 

Various forms of  that relationship have been proposed [3-6]. It is usually approximated as a kinked line consisting 
of several straight sections, with the coefficients taken as certain universal parameters completely determined by root 
mass density and plant physiology. In fact, that approach is essentially incorrect because the transpiration rate is 
dependent not only on the water content in the soil but also on the transport rate directly to the roots. The latter varies 
with the soil structure. Therefore,  for  a given water content, the transpiration rates for  given plants will be dependent 
on the water transport in the soil, i.e., one cannot consider the process as universal. 

1. We represent the soil as consisting of contacting porous granules [2], which for simplicity we take as identical 
spheres. The plant roots usually lie in the gaps between the granules and absorb water vapor [3]. We assume that 
condensed water occurs only within the granules, and the water enters the space between them by evaporation and 
transport in the granules. The rates are usually much less than the mixing rates in the intergranules space on scales of 
the order of  the characteristic microstructure length, so the vapor concentration c can be taken as homogeneous. It is 
realistic to assume that the rate-limiting step in transpiration is water absorption at the root-surfaces, not transport in 
the gas. One then represents the uptake as a f i rs t -order  reaction, and the mass of water absorbed in unit volume of soil 
in unit time is kc, where k is the product of the specific area of the active root-system surface and the rate constant for 
the reaction, which may be considered as known. 

Several physical mechanisms are involved in water transport within the granules [1, 7, 8]. Heuristically, one can 
distinguish transport in the condensed state by capillary impregnation, the motion of  thin liquid films diffusion in sorbed 
layers, and so on, as well as diffusion of the evaporating water in the pore space not filled by liquid. 

The simultaneous description of those processes is exceptionally complicated, as is familiar f rom drying theory 
[8]; to consider the essence, we discuss only simple models, which correspond essentially to different  transport rates in 
the condensed and vapor states subject to some simplifying assumptions. 

2. Let  the condensed-water  transport rate be much less than the vapor rate in the gas. Then we get a model for 
the evaporation front  r = R(t) in each granule, which separates the region r < R, in which part ~ of the pore space is 
filled by condensed water, f rom the part containing water only as vapor [9]. The front  as a zero-thickness surface is an 
idealization, because there are size differences in the capillaries and pores, and saturation pressure differences over the 
corresponding menisci, together with transport of condensed or sorbed water, so the front  is diffuse and there is a f inite- 
thickness inhomogeneous zone. However,  the model with a step change in water content a the front  is acceptable if  that 
thickness is much less than the granule radius R o. 
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